Augmented Reality

Glasses

AR Glasses

Augmented reality (AR) is a live direct or indirect view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. It is related to a more general concept called mediated reality, in which a view of reality is modified (possibly even diminished rather than augmented) by computer. As a result, the technology functions by enhancing one’s current perception of reality. By contrast, virtual reality replaces the real world with a simulated one. Augmentation is conventionally in real time and in semantic context with environmental elements, such as sports scores on TV during a match. With the help of advanced AR technology (e.g. adding computer vision and object recognition) the information about the surrounding real world of the user becomes interactive and digitally manipulable. Information about the environment and its objects is overlaid on the real world. This information can be virtual or real, e.g. seeing other real sensed or measured information such as electromagnetic radio waves overlaid in exact alignment with where they actually are in space. Augmented reality brings out the components of the digital world into a person's perceived real world. One example is AR Glasses for construction workers which displays information about the construction sites.

Hardware

Hardware components for augmented reality are: processor, display, sensors and input devices. Modern mobile computing devic es like smartphones and tablet computers contain these elements which often include a camera and MEMS sensors such as accelerometer, GPS, and solid state compass, making them suitable AR platforms.

Display

Various technologies are used in Augmented Reality rendering including optical projection systems, monitors, hand held devices, and display systems worn on the human body.

Head-mounted

A head-mounted display (HMD) is a display device paired to the forehead such as a harness or helmet. HMDs place images of both the physical world and virtual objects over the user's field of view. Modern HMDs often employ sensors for six degrees of freedom monitoring that allow the system to align virtual information to the physical world and adjust accordingly with the user's head movements. HMDs can provide VR users mobile and collaborative experiences.

AR Glasses

AR displays can be rendered on devices resembling eyeglasses. Versions include eyewear that employ cameras to intercept the real world view and re-display its augmented view through the eye pieces and devices in which the AR imagery is projected through or reflected off the surfaces of the eyewear lens pieces.

HUD

Near eye augmented reality devices can be used as portable head-up displays as they can show data, information, and images while the user views the real world. Many definitions of augmented reality only define it as overlaying the information. This is basically what a head-up display does; however, practically speaking, augmented reality is expected to include tracking between the superimposed information, data, and images and some portion of the real world.

Contact lenses

Contact lenses that display AR imaging are in development. These bionic contact lenses might contain the elements for display embedded into the lens including integrated circuitry, LEDs and an antenna for wireless communication. The first contact lens display was reported in 1999 and subsequently, 11 years later in 2010/2011 Another version of contact lenses, in development for the U.S. Military, is designed to function with AR glasses, allowing soldiers to focus on close-to-the-eye AR images on the spectacles and distant real world objects at the same time. The futuristic short film Sight features contact lens-like augmented reality glasses.